Part Number Hot Search : 
74LS27P MRF500 2N540 63613 15KP120C S1500 PTM1300 6047562
Product Description
Full Text Search
 

To Download AD8648 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Low Cost, 24 MHz, Rail-to-Rail, Quad Amplifiers AD8648
FEATURES
Low offset voltage: 2.5 mV max Single-supply operation: 2.7 V to 5.5 V Low noise: 6 nV/Hz Wide bandwidth: 24 MHz Slew rate: 12 V/s High output current: 150 mA No phase reversal Low input bias current: 1 pA Low supply current: 2 mA max Unity-gain stable
PIN CONFIGURATIONS
OUT A 1 -IN A 2 +IN A 3 V+ 4 +IN B 5 -IN B 6 OUT B 7
14 13
OUT D -IN D +IN D V- +IN C -IN C OUT C
05890-001
05890-002
AD8648
TOP VIEW (Not to Scale)
12 11 10 9 8
Figure 1. 14-Lead TSSOP (RU-14)
OUT A
1 2 3 4 5 6 7 14 13
OUT D -IN D +IN D
APPLICATIONS
Barcode scanners Battery-powered instrumentation Multipole filters Sensors ASIC input or output amplifiers Audio Photodiode amplification
-IN A +IN A V+ +IN B -IN B OUT B
AD8648
12
TOP VIEW 11 V- (Not to Scale) 10 +IN C
9 8
-IN C OUT C
Figure 2. 14-Lead SOIC (R-14)
GENERAL DESCRIPTION
The AD8648 is a quad, rail-to-rail, input and output, singlesupply amplifier featuring low offset voltage, wide signal bandwidth, and low input voltage and current noise. The combination of 24 MHz bandwidth, low offset, low noise, and very low input bias current makes these amplifiers useful in a wide variety of applications. Filters, integrators, photodiode amplifiers, and high impedance sensors all benefit from the combination of performance features. AC applications benefit from the wide bandwidth and low distortion. The AD8648 family offers high output drive capability, which is excellent for audio line drivers and other low impedance applications. Applications for the part include portable and low powered instrumentation, audio amplification for portable devices, portable phone headsets, bar code scanners, and multipole filters. The ability to swing rail to rail at both the input and output enables designers to buffer CMOS ADCs, DACs, ASICs, and other wide output swing devices in single-supply systems.
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 (c)2006 Analog Devices, Inc. All rights reserved.
AD8648 TABLE OF CONTENTS
Features .............................................................................................. 1 Applications....................................................................................... 1 Pin Configurations ........................................................................... 1 General Description ......................................................................... 1 Revision History ............................................................................... 2 Specifications..................................................................................... 3 Absolute Maximum Ratings ............................................................5 Thermal Resistance .......................................................................5 ESD Caution...................................................................................5 Typical Performance Characteristics ..............................................6 Outline Dimensions ....................................................................... 12 Ordering Guide .......................................................................... 12
REVISION HISTORY
1/06--Rev 0: Initial Version
Rev. 0 | Page 2 of 12
AD8648 SPECIFICATIONS
VDD = 5.0 V, VCM = VDD/2, TA = 25oC, unless otherwise noted. Table 1.
Parameter INPUT CHARACTERISTICS Offset Voltage Offset Voltage Drift Input Bias Current Symbol VOS VOS/T IB Conditions VCM = 0 V to 5 V -40C < TA < +125C -40C < TA < +125C -40C < TA < +85C -40C < TA < +125C Input Offset Current IOS -40C < TA < +85C -40C < TA < +125C Input Voltage Range Common-Mode Rejection Ratio Large-Signal Voltage Gain Input Capacitance OUTPUT CHARACTERISTICS Output Voltage High VCM CMRR AVO CDIFF CCM VOH VCM = 0 V to 5.0 V RL = 2 k, VO = 0.5 V to 4.5 V 0 67 160 84 700 2.5 6.7 4.99 4.92 8.4 78 150 3 63 80 1.8 20 145 200 0.1 Min Typ 0.7 2.0 0.2 Max 2.5 3.2 7.5 1 50 550 0.5 50 250 5 Unit mV mV V/C pA pA pA pA pA pA V dB V/mV pF pF V V V mV mV mV mA dB mA mA V/s s MHz Degrees V nV/Hz nV/Hz dB dB
Output Voltage Low
VOL
IOUT = 1 mA IOUT = 10 mA -40C < TA < +125C IOUT = 1 mA IOUT = 10 mA -40C < TA < +125C At 1 MHz, AV = 1 VDD = 2.7 V to 5.5 V -40C < TA < +125C
4.98 4.87 4.70
Short-Circuit Output Current Closed-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier DYNAMIC PERFORMANCE Slew Rate Settling Time Gain Bandwidth Product Phase Margin NOISE PERFORMANCE Peak-to-Peak Noise Voltage Noise Density Channel Separation
ISC ZOUT PSRR ISY
2.0 2.5
SR ts GBP M en p-p en CS
RL = 2 k To 0.01%
12 0.5 24 74 2.4 8 6 -115 -110
0.1 Hz to 10 Hz f = 1 kHz f = 10 kHz f = 10 kHz f = 100 kHz
Rev. 0 | Page 3 of 12
AD8648
VDD = 2.7 V, VCM = VDD/2, TA = 25oC, unless otherwise noted. Table 2.
Parameter INPUT CHARACTERISTICS Offset Voltage Offset Voltage Drift Input Bias Current Symbol VOS VOS/T IB Conditions VCM = 0 V to 2.7 V -40C < TA < +125C -40C < TA < +125C -40C < TA < +85C -40C < TA < +125C Input Offset Current IOS -40C < TA < +85C -40C < TA < +125C Input Voltage Range Common-Mode Rejection Ratio Large-Signal Voltage Gain Input Capacitance OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Output Current Closed-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier DYNAMIC PERFORMANCE Slew Rate Settling Time Gain Bandwidth Product Phase Margin NOISE PERFORMANCE Peak-to-Peak Noise Voltage Noise Density Channel Separation VCM CMRR AVO CDIFF CCM VOH VOL ISC ZOUT PSRR ISY VCM = 0 V to 2.7 V RL = 2 k, VO = 0.5 V to 2.2 V 0 62 60 79 130 2.5 7.8 2.69 11 50 3 63 80 1.7 25 30 0.1 Min Typ 0.7 1.8 0.2 Max 2.5 3.2 7.0 1 50 550 0.5 50 250 2.7 Unit mV mV V/C pA pA pA pA pA pA V dB V/mV pF pF V V mV mV mA dB mA mA V/s s MHz Degrees V nV/Hz nV/Hz dB dB
IOUT = 1 mA -40C < TA < +125C IOUT = 1 mA -40C < TA < +125C At 1 MHz, AV = 1 VDD = 2.7 V to 5.5 V -40C < TA < +125C
2.65 2.60
2.0 2.5
SR ts GBP M en p-p en CS
RL = 2 k To 0.01%
12 0.3 22 52 2.1 8 6 -115 -110
0.1 Hz to 10 Hz f = 1 kHz f = 10 kHz f = 10 kHz f = 100 kHz
Rev. 0 | Page 4 of 12
AD8648 ABSOLUTE MAXIMUM RATINGS
Table 3.
Parameter Supply Voltage Input Voltage Differential Input Voltage Output Short Circuit to GND Storage Temperature Range Operating Temperature Range Lead Temperature (Soldering, 60 sec) Junction Temperature Rating 6V GND to VDD 3 V Indefinite -65C to +150C -40C to +125C 300C 150C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
THERMAL RESISTANCE
JA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. Table 4. Thermal Resistance
Package Type 14-Lead SOIC (R) 14-Lead TSSOP (RU) JA 120 180 JC 36 35 Unit C/W C/W
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
Rev. 0 | Page 5 of 12
AD8648 TYPICAL PERFORMANCE CHARACTERISTICS
140 120
INPUT BIAS CURRENT (pA)
V DD = 5V V CM = 2.5V T = 25C 1400 AMPLIFIERS
1000
VDD = 2.7V TO 5V
NUMBER OF AMPLIFIERS
100 80 60 40 20
100
10
1
05890-003
-1.5
-1.0 -0.5 0 0.5 1.0 INPUT OFFSET VOLTAGE (mV)
1.5
2.0
45
65 85 TEMPERATURE (C)
105
125
Figure 3. Input Offset Voltage Distribution
Figure 6. Input Bias Current vs. Temperature
30
1000
25
NUMBER OF AMPLIFIERS
OUTPUT SATURATION VOLTAGE (mV)
V DD = 5V V CM = 2.5V -40C < TA < +125C
VDD = 5V T = 25C VDD - VOH SOURCING
100
20
15
10
VOL SINKING
10
1
5
05890-004
0
1
2
3 4 TCVOS (V/C)
5
6
7
0.01
0.1 1 LOAD CURRENT (mA)
10
100
Figure 4. VOS Drift (TCVOS) Distribution
Figure 7. Output Saturation Voltage vs. Load Current
2500 2000
25
OUTPUT SATURATION VOLTAGE (mV)
VDD = 5V TA = 25C
VDD = 5V IOUT = 1mA
INPUT OFFSET VOLTAGE (V)
1500 1000 500 0 -500 -1000 -1500 -2000
05890-005
20
15 VDD - VOH SOURCING 10 VOL SINKING 5
0
1 2 3 4 INPUT COMMON-MODE VOLTAGE (V)
5
-20
0
20 40 60 TEMPERATURE (C)
80
100
120
Figure 5. Input Offset Voltage vs. Input Common-Mode Voltage
Figure 8. Output Saturation Voltage vs. Temperature
Rev. 0 | Page 6 of 12
05890-008
-2500
0 -40
05890-007
0
0.1 0.001
05890-006
0 -2.0
0.1 25
AD8648
80 OPEN-LOOP PHASE SHIFT (Degrees)
60 OPEN-LOOP GAIN (dB)
VDD = 5V RL = 1k CL = 10pF PHASE
0
100
VDD = 5V TA = 25C
45
80
40
90
CMRR (dB)
20
M = 74
135
60
GAIN
0 180
40
-20
225
05890-009
100k
1M FREQUENCY (Hz)
10M
10k
100k FREQUENCY (Hz)
1M
10M
Figure 9. Open-Loop Gain and Phase vs. Frequency
Figure 12. Common-Mode Rejection Ratio vs. Frequency
5.0 4.5 4.0
OUTPUT SWING (V p-p)
VDD = 5V VIN = 4.9V p-p AV = 1 RL = 10k TA = 25C
100
PSRR+
VDD = 5V TA = 25C
80 PSRR-
PSRR (dB)
3.5 3.0 2.5 2.0 1.5 1.0 0.5
05890-010
60
40
20
1M FREQUENCY (Hz)
10M
10k
100k FREQUENCY (Hz)
1M
10M
Figure 10. Maximum Output Swing vs. Frequency
Figure 13. Power Supply Rejection Ratio vs. Frequency
1000
1000
VDD = 5V TA = 25C
VDD = 2.7V TO 5V TA = 25C
100
VOLTAGE NOISE DENSITY (nV/Hz)
100
ZOUT ()
10
AV = 100
10
1
AV = 10
AV = 1
05890-011
10K
100K
1M
10M
100M
100 FREQUENCY (Hz)
1k
10k
FREQUENCY (Hz)
Figure 11. Closed-Loop Output Impedance vs. Frequency
Rev. 0 | Page 7 of 12
Figure 14. Voltage Noise Density vs. Frequency
05890-014
0.1 1K
1 10
05890-013
0 100k
0 1k
05890-012
-40 10k
270 100M
20 1k
AD8648
0.1
VDD = 2.7V TO 5V TA = 25C
VDD = 5V VIN = 300mV rms BW = 80kHz RL = 100k
VOLTAGE (1V/DIV)
THD + NOISE (%)
05890-015
0.01
0.001
100
1k FREQUENCY (Hz)
10k
20k
TIME (1s/DIV)
Figure 15. 0.1 Hz to 10 Hz Voltage Noise
Figure 18. THD + Noise vs. Frequency
OUTPUT VOLTAGE (50mV/DIV)
VDD = 5V RL = 10k CL = 20pF AV = 1
1
0.1
THD + NOISE (%)
0.01
0.001
05890-016
0.01
0.1
1
TIME (40ns/DIV)
OUTPUT AMPLITUDE (V rms)
Figure 16. Small-Signal Transient Response
Figure 19. THD + Noise vs. Output Amplitude
SMALL-SIGNAL OVERSHOOT (%)
OUTPUT VOLTAGE (500mV/DIV)
VDD = 5V RL = 100k CL = 20pF AV = 1
70 60 50 40
VDD = 5V RL = 10k TA = 25C
OS+ 30 20 10 0 10 OS-
05890-017
100 LOAD CAPACITANCE (pF)
1000
TIME (200ns/DIV)
Figure 17. Large-Signal Transient Response
Figure 20. Small-Signal Overshoot vs. Load Capacitance
Rev. 0 | Page 8 of 12
05890-020
05890-019
0.0001 0.001
VDD = 5V AV = 1 BW = 30kHz RL = 100k f = 1kHz
05890-018
0.0001 20
AD8648
160 140
NUMBER OF AMPLIFIERS OUTPUT SATURATION VOLTAGE (V)
VDD = 2.7V VCM = 1.35V TA = 25C 1400 AMPLIFIERS
1000
VDD = 2.7V TA = 25C
120 100 80 60 40 20 0 -2.0
100 VDD - VOH SOURCING 10 VOL SINKING 1
05890-021
-1.5
-1.0
-0.5
0
0.5
1.0
1.5
2.0
0.01
0.1 LOAD CURRENT (mA)
1
10
INPUT OFFSET VOLTAGE (mV)
Figure 21. Input Offset Voltage Distribution
Figure 24. Output Saturation Voltage vs. Load Current
30
25
NUMBER OF AMPLIFIERS
OUTPUT SATURATION VOLTAGE (V)
VDD = 2.7V VCM = 1.35V -40C < TA < +125C
25
VDD = 2.7V ILOAD = 1mA
20 VDD - VOH SOURCING 15 VOL SINKING 10
20
15
10
5
5
05890-022
0
1
2
3
4 TCVOS (V/C)
5
6
7
8
-20
0
20
40
60
80
100
120
TEMPERATURE (C)
Figure 22. VOS Drift (TCVOS) Distribution
Figure 25. Output Saturation Voltage vs. Temperature
2500 2000
INPUT OFFSET VOLTAGE (V)
80 VDD = 2.7V TA = 25C 60
1500 1000 500 0 -500 -1000 -1500 -2000 0 0.5 1.0 1.5 2.0 2.5 3.0
05890-023
45
40
90
20
M = 52
135
0
180
-20
225
100k
1M FREQUENCY (Hz)
10M
INPUT COMMON-MODE VOLTAGE (V)
Figure 23. Input Offset Voltage vs. Input Common-Mode Voltage
Figure 26. Open-Loop Gain and Phase vs. Frequency
Rev. 0 | Page 9 of 12
05890-026
-2500
-40 10k
270 100M
OPEN-LOOP PHASE SHIFT (Degrees)
VDD = 2.7V RL = 1k CL = 10pF
0
OPEN-LOOP GAIN (dB)
05890-025
0
0 -40
05890-024
0.1 0.001
AD8648
3.0 100 VDD = 2.7V VIN = 2.6V p-p AV = 1 RL = 10k TA = 25C PSRR+ 80 VDD = 2.7V TA = 25C
2.5
OUTPUT SWING (V p-p)
2.0
1.5
PSRR (dB)
60
PSRR-
40
1.0 20
0.5
05890-027
1M FREQUENCY (Hz)
10M
10k
100k FREQUENCY (Hz)
1M
10M
Figure 27. Maximum Output Swing vs. Frequency
Figure 30. Power Supply Rejection Ratio vs. Frequency
1000
VDD = 2.7V TA = 25C
100 AV = 100 10
AV = 10 AV = 1
1
05890-028
10k
100k
1M
10M
100M
FREQUENCY (Hz)
TIME (40ns/DIV)
Figure 28. Closed-Loop Output Impedance vs. Frequency
Figure 31. Small-Signal Transient Response
100
VDD = 2.7V TA = 25C
80
60
40
10k
100k FREQUENCY (Hz)
1M
10M
05890-029
TIME (1s/DIV)
Figure 29. Common-Mode Rejection Ratio vs. Frequency
Rev. 0 | Page 10 of 12
Figure 32. Large-Signal Transient Response
05890-032
20 1k
OUTPUT VOLTAGE (500mV/DIV)
VDD = 2.7V RL = 10k CL = 20pF AV = 1
CMRR (dB)
05890-031
0.1 1k
OUTPUT VOLTAGE (50mV/DIV)
VDD = 2.7V RL = 10k CL = 20pF AV = 1
ZOUT ()
05890-030
0 100k
0 1k
AD8648
50
40
SUPPLY CURRENT PER AMPLIFIER (mA)
SMALL-SIGNAL OVERSHOOT (%)
VDD = 2.7V RL = 10k TA = 25C
2.5
TA = 25C
2.0
30
OS+ OS-
1.5
20
1.0
10
0.5
05890-033
1
10
100
1000
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
LOAD CAPACITANCE (pF)
SUPPLY VOLTAGE (V)
Figure 33. Small-Signal Overshoot vs. Load Capacitance
Figure 35. Supply Current per Amplifier vs. Supply Voltage
4.0
SUPPLY CURRENT PER AMPLIFIER (mA)
VOUT = VDD/2 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 -40 VDD = 2.7V VDD = 5.0V
-20
0
20
40
60
80
100
120
TEMPERATURE (C)
Figure 34. Supply Current per Amplifier vs. Temperature
05890-034
Rev. 0 | Page 11 of 12
05890-035
0
0
AD8648 OUTLINE DIMENSIONS
5.10 5.00 4.90
14
8
4.50 4.40 4.30
1 7
6.40 BSC
PIN 1 1.05 1.00 0.80 0.65 BSC 1.20 MAX 0.15 0.05 0.30 0.19
0.20 0.09
SEATING COPLANARITY PLANE 0.10
8 0
0.75 0.60 0.45
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1
Figure 36. 14-Lead Thin Shrink Small Outline Package [TSSOP] (RU-14) Dimensions shown in millimeters
8.75 (0.3445) 8.55 (0.3366) 4.00 (0.1575) 3.80 (0.1496)
14 1 8 7
6.20 (0.2441) 5.80 (0.2283)
0.25 (0.0098) 0.10 (0.0039) COPLANARITY 0.10
1.27 (0.0500) BSC
1.75 (0.0689) 1.35 (0.0531)
0.50 (0.0197) x 45 0.25 (0.0098)
0.51 (0.0201) 0.31 (0.0122)
SEATING PLANE
8 0.25 (0.0098) 0 1.27 (0.0500) 0.40 (0.0157) 0.17 (0.0067)
COMPLIANT TO JEDEC STANDARDS MS-012-AB CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 37. 14-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-14) Dimensions shown in millimeters and (inches)
ORDERING GUIDE
Model AD8648ARZ 1 AD8648ARZ-REEL1 AD8648ARZ-REEL71 AD8648ARUZ1 AD8648ARUZ-REEL1
1
Temperature Range -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C
Package Description 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead TSSOP 14-Lead TSSOP
Package Option R-14 R-14 R-14 RU-14 RU-14
Z = Pb-free part.
(c)2006 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05890-0-1/06(0)
Rev. 0 | Page 12 of 12


▲Up To Search▲   

 
Price & Availability of AD8648

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X